Course Objects and an Architecture for Services

August 8, 2008

Tom Wason, Intelligent Automation, Inc.

11. Abstract

12. Problem definition

23. Use cases

24. Stakeholders

35. Proposed solution

35.1. Web Services Architecture for Education and Training

55.2. Course Object Model

65.2.1. What is a course object?

65.2.2. How does it work?

75.2.3. Advantages

85.2.4. Disadvantages

96. Integration and other technical issues

97. Existing implementations/prototypes

108. Summary and recommendations

1. Abstract

An object model of a course can support a number of specifications. It can enable new services. The term “course” is used in its broadest sense here, including institutionally delivered instruction, electronic manuals, self-instruction and collaboration. The manner of delivering the course is separate from the course itself. A learner may (optionally) interact directly with a course object that may serve as his or her proxy, providing services not available in an LMS or RTE. A services oriented architecture (SOA) model of course delivery is presented although it is not required. A SOA model makes it easier to understand the ramifications of a course object model. A course object in a SOA for course delivery can support multiple specifications. The architecture separates the course specification used from the delivery mechanism. The architecture allows searching for the needed services to deliver the course according to the context of the student and the specification(s) used. The services that can be used in delivering courses can be discovered and the specifications they support can be displayed.
2. Problem definition

Why? This paper proposes another way of looking at instructional systems and specifications. If one is to propose something different there are questions that must be addressed:

· Why would you do this?

· What should it accomplish?

· Why is it better? Than what?

The answers don’t map strictly to each question but address all of the questions of how to:

· Support viable business models

· Reduce down to current systems

· Be able to use SCORM 2004 and SCORM 2.0

· Allow use of IMS, S1000D and other specifications

· Enable solutions as currently defined

· Enable new solutions

· Enable evolving specifications

· Maintain openness

· Maintain student confidentiality

· The problem is then how do you address the questions such that you support the answers. What is suggested is a focus on the course as an object, potentially in a distributed system.

3. Use cases

Examples:

· Provide capabilities that may not all be provided by a single source according to need, e.g., assessment, email, collaboration, course delivery, simulations, persistence

· Determine the context (platform, connectivity) that a user has so that appropriate content can be used with appropriate interactivity.

· Support user accessibility requirements.

· Provide sharable state persistence to run SCORM 2004 packages

· Transform a SCORM 2004 package into IMS or another standard and vise versa.

· Deliver a course or resources that supports more than one standard

· Discover resources to incorporate into a course.

· Run a course with only the basic sequencing in a runtime environment (RTE) that supports only the basic sequencing.

· Determine if sharable state persistence is provided so that appropriate materials can be used.

· Test versions of a course in different specifications for conformance.

· Use a service that may not reside at the course delivery site.

· Determine who can use a service.

· Find a service.

· Create a new service such as transform and test.

· Discovery ancillary resources

4. Stakeholders

Within the overall system stakeholders have one or more roles:

· End users (learners)

· Instructional enterprises

· Course developers

· Content developers

· Content providers

· Learner management providers such as LMSs

· Tool vendors

· Services providers (assessments, collaboration tools, etc.)

· Specifications developers

Each of these has a business model for participating in instructional experiences. Those business models need to be supported.

5. Proposed solution

The objective is to have LETSI leapfrog other specifications. The point is not the specifications so much as providing training, education and beyond. Two components are suggested for consideration:

· Web Services Architecture for Education and Training

· Course Oriented Delivery

The key concept is the course as an object. This is best described in the context of a services architecture. A cursory description of a WSA is provided below.

5.1. Web Services Architecture for Education and Training

It is presumed that SCORM 2.0 will embrace a (Web) Services Oriented Architecture for Education and Training hence only a brief description of a Services Oriented Architecture (SOA) or a Web Services Architecture (WSA) will be given. The Web part is determined by whether the service is provided on an internal, secure network (SOA) or over the Web (WSA). An SOA is like a private pipeline. You can pump stuff in and suck stuff out as if you were the only one hooked up to it. An exploration of Web services is not an objective of this paper. Web services will be discussed as a preamble to a course oriented model. A SOA model makes it easier to understand the ramifications of a course object model although a SOA is not required for course objects. The Web version can be simplified in an internal SOA.
A SOA/WSA description of SCORM 2.0 would start by defining the language used to describe services; WSDL is the most probable enabling choice for this. SCORM 2.0 would then proceed to define the WSDLs for the most commonly used services. This architecture separates the instructional standards from the delivery system. The architecture can allow multiple standards to be used. Each service defines through its WSDLs the services it provides and the specifications it supports. SCORM 2.0 can define the WSDL language for SCORM 2004 and other standards capabilities. SCORM can grow new services in its specifications, primarily by importing other specifications and defining how they are to be used.

A WSA has service providers and service consumers. Services in a WSA (or SOA) can be described using WSDL (WSDL is an XML grammar for describing web services: http://www.developer.com/services/article.php/1602051). These WSDLs can be defined in SCORM 2.0. These descriptions include service ports and their protocols. A WSA can support many standards and specifications. A key part of a WSA is the identity provider (IdP). Verisign is an example of an identify provider. This could be an opportunity for LETSI to set up that service and derive revenue from it. An enterprise (e.g., University, military service) could provide it internally. Within a secure network the security needs are lessened. Typically an identity provider is a service that provides authentication, authorization, encryption keys and user attributes. One should not get wound up over the identity provider. It is an inherent part of an enterprises SOA and is part of any WSA. It just makes sure that everyone plays together nicely.
An objective is to provide low-level service descriptions or service “primitives” from which complete components are built. The primitives will comprise the elements for WSDL descriptions. One should bear in mind that a given component (i.e., application) may chose to expose several of its constituent services. For example a metadata management service may provide an online edit interface and a search interface.

[image: image1.wmf]

Service Consumer

Service Provider

Identity Provider (IdP)

Service

Authenticate

Request Service

Request IdP and Token

Request Authentication Token

Execute Request

Provide Authentication Token

Provide Authentica

tion Token

Provide Service Results

VerifyToken

Get IdP

WSA

Figure 1. A simplified service request profile implementing an optional Web services architecture (WSA) with security (IpD).

The three service entities in this profile are general designations. A service consumer may be a learner. It may be an RTE using an external simulation. An entity may be both a provider (an RTE delivering a course) and a user (an RTE requesting learner information from an identity provider). A component may contain more than one service, for example an LMS may contain a learner management system, an RTE and be the identity provider (IdP). A component may not expose all of its services but only use them internally. In a more complex profile the primary component provider may use other services both within the same enterprise and other enterprises to accomplish the requested service. Participants in a services oriented architecture need established working relationships in order to participate unless a service is intentionally “open.” These working contracts are normally negotiated out-of-band. How it does it is not part of the specification. The business rules to be used may be negotiated out-of-band in the contract. [The telephone can be a good start.] User information (attributes) may be exchanged (provisioning). Thus a learner manager system may control some of the services that a course may access through its service contracts. Now to turn to a course object model. Services may be discovered through a “discovery service” that exposes the WSDLs of the services and their points of contact if needed. Service providers may subscribe to a discovery service. An objective of SCORM 2.0 may be to provide a language for describing services for a services architecture and specifications for the essential services. Services oriented and Web services architectures have been described elsewhere (e.g., Web Services Interoperability: http://www.ws-i.org/;Liberty Alliance: http://www.projectliberty.org/). A specific implementation will describe how it uses the underlying infrastructure. A user level application is build from services that use a library of common services. These communicate via the underlying infrastructure, which also provides security including identity services. A typical profile is illustrated (Figure 1).

Possible Services

Services can be grouped according to the need that they be implemented. Below are some representative service components for online education of different granularities:

Required

· Discovery (of services)

· Identity provider (authentication, authorization, attributes and encryption support: this could be a LETSI service)

· Content repository

· Content registry

· Packaging

· Student management system

· Identity provider

· Course management

· Sequencing

Desired

· Search

· Shared State Persistence

· Learner information

· Metadata management

· Assessment

· Compliance testing

Of interest

· Simulation

· Transformation (e.g., S1000D to SCORM 2004)

· Course/lesson evaluation

· Classroom management (meta-classroom)

· Certification

· Competency vocabularies

· Taxonomies

· Mirror/cache

· Expert tutor

A discovery service is a registry. It exposes what services are available and what they will do: how they communicate and the formats they support. These are defined in the WSDLs. SCORM 2.0 can have a specification defining the language (syntax) and standard terminology (vocabulary): service description, specification supported, acceptance format, accessibility supported, context supported. What a service is does not define how it does it. That is out of scope. A service that transforms materials in S1000D into SCORM 2004 may do so with a combination of tools and human effort.

5.2. Course Object Model

Conventional online instructional models focus on the LMS as the delivery system for a package—a course. It is useful to think of the delivery of courses (and other learning experiences) from the standpoint of the COURSE rather than an LMS. A course can be a closed bundle, or object. The student’s primary interaction is with the course object rather than the LMS.

5.2.1. What is a course object?

A course object encapsulates what it has and what it does. In an object oriented design model an object has content (data) and processes (methods). Essentially it is a program. It can hide its contents, revealing them through its interface processes. Its processes can manipulate its data. It can contain other objects. It has the ability to function according to its context, a property called polymorphism. The course has processes that communicate over the services architecture to the services needed to deliver the experience to the user. A course can have internal processes that may not be exposed to the outside world. A course object may simply wrap up a standard course, providing a method (process) for extracting the course for an LMS. Different roles relative to a course can be enabled using the course object’s polymorphic capabilities combined with access control mechanisms. A course object can support intellectual property rights (IPR) through either its access controls or by being hosted by the course owner. Most probably a course object would be a Java object.

A course object may contain more than one form of a course. It may provide different specification forms, perhaps using many of the same resources by implementing more than one specification. For example, a course may contain SCOM 2004, IMS, DITA and S1000D forms. A course may support multiple versions. A course may support different external resource models, for example URLs, simulations, assessments and collaboration. A course may be encrypted and/or contain encrypted materials. The encryption keys can be supplied out-of-band. A course object may supply information about what it can provide.
5.2.2. How does it work?

A services model (see Section 5.1 above) is useful to describe how a course object works. A course object is instantiated on a host. Generally a host is a server equipped to run a course object with appropriate security. The host does not need to be the LMS or RTE. A course object delivers a course to a RTE or LMS that then plays it for the student. There is, so to speak, a separation of course ownership from experience. Once the course object determines the form in which it is to be used, and role(s) of the users, it can deliver services and content to the RTE and the users in the appropriate manner.
A student may access a course object through some service such as a learner manager service. Such a service may specify the conditions under which the student may use the course object. If the course is considered an object, then a student taking a course instantiates it, starting it running on a host platform. This is not the same as running the course through an RTE or LMS. The RTE is a service, as is the LMS. The course can be a proxy for the learner, working between the learner and the other services. I this mode it can bring in services to the learner that may not be present in the RTE or LMS. At this point, the course can query the learner and learner manager as to the learner's context and other information. The learner, identified with a unique ID for this course (a session ID, SID or a pseudonym), interacts with the course. This means the course defines the services it needs, including the specification(s) that it supports for each service. The RTE is a service that "knows" the learner only by his SID (anonymity). The RTE may communicate with the management server using the SID. The course may mix specifications, as it may request a particular service for a particular component of a course that uses a particular specification. A course could be polymorphic, able to support multiple specifications. The course may expose a list of the specifications it must and may support, of the outside services it needs and of the user context (platform, accessibility) it supports, the course effectively being polymorphic. This requires some support structures, but those live with the course and/or student profile. In some ways the course can act as proxy for the learner. The identity provider service may provide various attributes of the learner and services.

The other side of this is the services. Services can be described (WSDLs) such that they define what they do and the specifications they will use to do it. An entity may provide multiple services within a package. For example an LMS may support runtime services, assessment and persistence. Each service exposes these interfaces, each appearing as a separate service. This is standard WSA/SOA. A live instructor may constitute a "service."

What differentiates this from a framework model is the use of the course to define the process and the services needed to run. The course wrapper thus defines what it needs as metadata of some sort. This is more a language than a fixed set of name-value pairs. The course acts like the instructor.

What will it mean to "run?" Does it have methods per se or a language that substitutes for methods that are published and well known (specifications). How does this devolve down to a standard SCORM (or IMS) course? Clearly the course has to have a place to "live," a host server. The course, with appropriate encryption, could live on the learner's platform. A student could acquire a course and "play" it on the management system or RTE of his choice. Separation of running a course on an RTE from the learner management system may provide interesting possibilities. SCORM 2.0 then provides a universal course object wrapper with an interface. Lots to say there. SCORM 2.0 starts defining the main services and interfaces. These are fine grained such that full services can be described from a library.

Let us turn to a scenario of a course object in action in a WSA (Figure 2). The learner logs into the student management service (SMS) that involves the IpD service in his authentication and descriptions of his authorizations. The SMS shows the learner the courses he can access. The learner selects a course. The SMS then turns the learner’s interaction over to the host on which the course object resides. [The learner could have gone there first.] The learner instantiates the course that checks with the IpD and then determines needs and context. The SMS may (but not must) define the RTE, with which it has a pre-negotiated agreement. The course exports a version of the course that suits the context and the capabilities of the services available. If the course object does not contain all of its resources it may use a search process to discover them.

[image: image2.wmf]

Host

Course

Object

Learner’s

Client

RTE

SMS

Resources

Discovery

IdP

Persistence

Assessment

Collab

Instructor

Simulation

Figure 2. Services and infrastructure

5.2.3. Advantages

A course object can:

· Implement multiple specifications. It can export a package to a RTE in a specific form, for example a polymorphic course object could “export” a standard SCORM 2004 or IMS package.

· Extract from itself the course to the standard needed—if it supports it

· Provide a package with minimal extraction utility

· Run on a minimal host if it supports a current standard specification model

· Allow portability among RTEs while maintaining the primary connection to the SMS/LMS.

· Reduces the LMS and RTE to services (an advantage and disadvantage)

· Be polymorphic, responding to different contexts appropriately

· Supports reuse both within and outside of the object

· Use internal processes, e.g., “smart” sequencing, learner proxy, searching, reporting, context specific assessment and security

· Provide its own persistence.

· Provide services to the learner that are not present in the RTE or LMS.

· Serve as a learner’s proxy, providing services to the learner that may be outside of the specification per se.

· Support search capabilities for the student: content, web, services

· Support collaboration

· Support intellectual property rights

· Supports student privacy

A vendor does not need to provide all of these capabilities within its course objects. The intent is to provide potential. An LMS or RTE does not need to use all of the capabilities. It may not call for them or “farm them out” to another service. The course object can provide the course in several configurations; it is not constrained to one configuration in one object. It may support different structural and flow standards (e.g., SCORM, IMS, DITA, S1000D, and AICC). It can support different contexts—platforms, user types and roles. Thus the course developer can create a single object that includes several specifications supporting several contexts. All of the resources can be bundled up in one object; many will be common across forms. Encryption can enable access to only specific forms.
Course objects will be created with tools and utilities. If courses are to be developed by a wider range of people and to be richer than many current offerings, good tools will be needed. Conceptually such tools are the equivalent of compilers. A basic course that is provided in one form in one standard could be wrapped up in an object with a utility for easy extraction. For example a basic utility could support wrapping a SCORM course up into an object, providing the exposed information as the to the standard support

5.2.4. Disadvantages

A course object:

· Can add complexity

· Requires a packaging tool

· Requires an extraction utility

· Reduces the LMS and RTE to services

· Duplicates much of the functionality of the IMS Common Cartridge and Authorization Service

· May require a change in the institutional model
· Requires proper course development tools

· May present validation problems

6. Integration and other technical issues

There existing Web Services Architecture specifications to build on: WS-I, Liberty Alliance project. There are security standards to build on in OASIS (e.g., SAML). This could be compatible with IMS Web and Services specifications.
The most difficult aspect on the creation side is the tools suite. Standard SCORM or IMS course can be wrapped up in an object fairly easily. Creation of polymorphic and student proxy courses is more complex, requiring tools that will need to be developed. On the run side this change in a course model requires the addition of a method of instantiating a course, even if only to extract a standard SCORM 2004 or IMS course. This potentially increases the course publisher’s control of the course. The security methods must be implemented in order to do this. Multiple Formats (polymorphism) provided by encapsulating more than one of the specification implementations using many common resources providing a new model of reuse.

The course object model does not need to be implemented in all forms by vendors. The forms supported can be negotiated among the course object, LMS, RTE and other services. A development plan can have stages:

Single formats:

SCORM content package
IMS content package
S1000D

Other

Extended formats:

IMS common cartridge
Extended functionality

Optional use

Required use

Addition of user services to content packages

User proxy

7. Existing implementations/prototypes

Common Cartridge

The IMS common cartridge specification has functionality that can be incorporated into the course object model. The course object model also:
· Provides the same functionality

· Adds polymorphism
· Adds ability to negotiate at instantiation to create an appropriate runtime experience

· Adds ability to have shared state persistence reside in the course

· Supports a services framework but is able to work without it.

IMS Web Services Framework

As noted above, WSAs exist. Organizations are expected to build on these strong standards. IMS provides a descriptive specification. Implementation is not fully specified. Services profiles are being defined. What is the current status of Internet2?

Objects
Java provides an established object model.
8. Summary and recommendations

A course object encapsulates a course in any number of manifestations allowing reuse of resources. A course object model can optionally move locus of control from the LMS to the learner enabling other services, such as simulations, collaborations and discovery (constructivist models). An object model supports greater intellectual property rights control. An course object model is a reconceptualization of online instruction. A course object model is well suited to, but not restricted to, working in a Web services architecture. It is presumed that SCOM 2.0 will support—if not incorporate—a WSA.
It is recommended that the concepts of a course object model be considered. It can provide a framework for considering the services that might be useful in course delivery. The technical changes needed should be explored, including the opportunity for powerful tools.
_1278936733.doc

Service Consumer

Service Provider

Identity Provider (IdP)�Service

Get IdP

Authenticate

Request Service

Request IdP and Token

Request Authentication Token

Execute Request

Provide Authentication Token

Provide Authentication Token

Provide Service Results

VerifyToken

WSA

_1278949149.doc

Host

Learner’s

Client

Course�Object

RTE

SMS

Resources

Discovery

IdP

Persistence

Collab

Assessment

Simulation

Instructor

